If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16p+4p^2=0
a = 4; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*4}=\frac{-32}{8} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*4}=\frac{0}{8} =0 $
| x7=42 | | 6-2x=x+3 | | (3x+5)3=0.008 | | 6q-9=12+13 | | 4(x+3)-3(x-1)=2 | | (2x+1)=14 | | (2x-6)=(4x+24) | | 4(x+3)+2(x-1)=2 | | F(x+3)=8x+4 | | (2n-8)=(3n-15) | | (2m+4)=(3m-9) | | Y-2(y+2)=5 | | 2x^-4x-5=0 | | 0.5x=0.1x+8 | | X+69=3x+12 | | 2(5x-3)-(2x-1)=9 | | 5t^2-6t+1=0 | | 10-6(8x-2)=9x-(3=4x) | | 3x-22=5x+17 | | 3(5x+2)=8x20 | | 63=3(2x+3) | | y;0,2=14,48 | | 8*(9^x)-(3^x)=0 | | 2x+14=3x-1 | | 11/4*16.5+9=x | | 7x2-72x-432=0 | | (11/4x)+9=3 | | 7x2+4x-114=0 | | 8*9^(x)-3^x=0 | | -)1/3y-6=-11 | | 5y=3y+1 | | 4p^2-56p+240=0 |